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Abstract. We show that maximal atmospheric and large solar neutrino mixing can be implemented in
SU(5) gauge theories, by making use of the U(1)F symmetry associated with a suitably defined family
number F , together with a Z2 symmetry which does not commute with F . U(1)F is softly broken by
the mass terms of the right-handed neutrino singlets, which are responsible for the seesaw mechanism; in
addition, U(1)F is also spontaneously broken at the electroweak scale. In our scenario, lepton mixing stems
exclusively from the right-handed-neutrino Majorana mass matrix, whereas the CKM matrix originates
solely in the up-type-quark sector. We show that, despite the non-supersymmetric character of our model,
unification of the gauge couplings can be achieved at a scale 1016 GeV < mU < 1019 GeV; indeed, we have
found a particular solution to this problem which yields results almost identical to the ones of the minimal
supersymmetric standard model.

1 Introduction

The solar and atmospheric neutrino deficits – for a recent
review see, e.g., [1] – are most naturally explained by neu-
trino oscillations [2], with matter effects playing a decisive
role for solar neutrinos [3]. Whereas the favored solution of
the solar neutrino problem, the large-mixing-angle MSW
solution, displays a large but non-maximal mixing angle θ,
the atmospheric neutrino problem with mixing angle θatm
requires sin2 2θatm > 0.92 at 90% CL [4]. It is not difficult
to explain large (not necessarily maximal) atmospheric
neutrino mixing – for reviews of mass-matrix textures for
neutrino masses and lepton mixing see [5]. However, if the
experimental lower bound on sin2 2θatm moves closer to
1, then the need for a symmetry to explain in a natu-
ral way θatm � 45◦ becomes acute. It is straightforward
– see for instance [6–8] – that such a symmetry should
be non-abelian. A few papers have attempted to explain
nearly maximal atmospheric neutrino mixing in this way
– for an incomplete list of references see [9–12]. Other ap-
proaches to this problem have also been suggested. For
an interesting model with lopsided mass matrices see [13].
The renormalization-group evolution of the lepton-mixing
angles from the grand unification scale mU down to the
electroweak scale mZ (the mass of the Z boson) has been
considered in many papers – see for instance [14–16] and
the works cited therein. Interesting results can be obtained
in this way [17], with part of the lepton-mixing problem
tackled by the renormalization-group evolution while the
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residual problem is left to be solved at the grand unifica-
tion scale.

In the present paper we discuss the model for maximal
atmospheric neutrino mixing introduced in [18], which be-
longs to the category of those using a non-abelian symme-
try group (see Sect. 3 of [18]). For simplicity, let us call that
model the maximal atmospheric mixing model (MAMM).
Our aim in this paper is to show that the MAMM, which
is a simple extension of the standard model (SM), can be
embedded in a grand unified theory (GUT) based on the
gauge group SU(5) [19] (for a textbook see, e.g., [20]; for
recent papers on the minimal supersymmetrized SU(5)
GUT see [21]). This “prototype GUT” can be considered
as a testing ground for ideas on neutrino masses and mix-
ing – for a recent paper see, e.g., [22].

First we summarize the MAMM. It concerns only the
lepton sector of the SM, with its gauge group which we
abbreviate as

GSM = SU(3) × SU(2) × U(1). (1)

There are the three well-known lepton families and, in
addition, three right-handed neutrino singlets νR with a
Majorana mass term

LM =
1
2
νT
RC

−1M∗
RνR − 1

2
ν̄RMRCν̄

T
R , (2)

where C is the charge-conjugation matrix and MR is sym-
metric. We implement the seesaw mechanism [23] by as-
suming that M†

RMR is non- singular and that all its eigen-
values are of order m2

R, with mR � mZ . This leads to the
effective Majorana mass matrix
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Mν = −MT
DM

−1
R MD (3)

for the light neutrinos. In (3),MD is the Dirac mass matrix
of the neutrinos. Allowing for an arbitrary number nH of
Higgs doublets, we avoid flavor-changing neutral Yukawa
interactions by requiring that all the Yukawa-coupling ma-
trices be diagonal – hence, MD too is diagonal. This proce-
dure is “natural,” since it amounts to conservation of the
three lepton numbers Le, Lµ, and Lτ in the Lagrangian.
The only exception to this conservation is the Majorana
mass term in (2), where the lepton numbers are allowed
to be broken softly. Despite the soft breaking of the lepton
numbers Lα (α = e, µ, τ) at the high scale mR, the result-
ing theory is well-behaved with respect to flavor-changing
interactions and, moreover, it exhibits an interesting non-
decoupling of the neutral scalar interactions for mR → ∞
when nH ≥ 2 [24]. In this framework, maximal atmo-
spheric neutrino mixing is implemented by the symmetry

Z2 : νµR ↔ ντR, Dµ ↔ Dτ , µR ↔ τR, (4)

where Dα denotes the left-handed lepton doublets. Be-
cause of Z2 we have

(MR)eµ = (MR)eτ , (MR)µµ = (MR)ττ , (5)

and
MD = diag (a, b, b) . (6)

As a consequence, the light-neutrino Majorana mass ma-
trix of (3) has the same structure as MR:

Mν =


x y y
y z w
y w z


 . (7)

Maximal atmospheric neutrino mixing and Ue3 = 0 im-
mediately follow from this structure of Mν . We stress
that this structure results from a symmetry and that the
MAMM, therefore, is really a model in the technical sense,
not just a texture1. Using an adequate phase convention
and dropping possible Majorana phases, from the Mν of
(7) we obtain the lepton-mixing matrix

U =


 cos θ sin θ 0

sin θ/
√

2 − cos θ/
√

2 −1/
√

2
sin θ/

√
2 − cos θ/

√
2 1/

√
2


 . (8)

Since mµ �= mτ , the Z2 symmetry of (4) must be broken
spontaneously by the vacuum expectation value (VEV)
of some Higgs doublet transforming non-trivially under
Z2. To avoid destruction of the form in (7) of the light-
neutrino mass matrix, such a Higgs doublet must not con-
tribute to MD, but only to the mass matrix of the charged
leptons. In [18] this problem was solved by having alto-
gether three Higgs doublets and an additional Z′

2 symme-
try; since that solution cannot be directly transferred to
an SU(5) model, we shall not discuss it in detail here.

1 The charged-lepton mass matrix remains diagonal because
of the assumed conservation, in all dimension-4 couplings, of
the three lepton numbers Lα

The Z2 of (4) does not commute with the U(1) associ-
ated with the lepton numbers Lµ and Lτ . It is easy to see
that we have in the MAMM the horizontal non-abelian
symmetry group

U(1)Le
× U(1)(Lµ+Lτ )/2 ×O(2)(Lµ−Lτ )/2. (9)

We have indicated the lepton-number combinations asso-
ciated with the U(1) groups; the O(2) is generated by

(
eiα(Lµ−Lτ )/2 0

0 e−iα(Lµ−Lτ )/2

)
(α ∈ R)

and
(

0 1
1 0

)
, (10)

corresponding to U(1)(Lµ−Lτ )/2 and Z2, respectively.
In this paper we shall discuss how the main features of

the MAMM, namely the groups U(1)Lα
softly broken by

LM and the symmetry Z2, can be embedded in an SU(5)
GUT. This will require a discussion of Z2 breaking within
SU(5) with the purpose of allowing for a non-trivial CKM
matrix. These subjects will be dealt with in Sect. 2. Since
we shall end up with a proliferation of scalar multiplets,
and since our model is in principle non-supersymmetric,
gauge-coupling unification in the MAMM SU(5) embed-
ding is a non-trivial undertaking. Possible solutions to this
problem will be studied in Sect. 3. Finally, our conclu-
sions are presented in Sect. 4. The two appendices contain
SU(5) technicalities; the Yukawa couplings of the scalar
SU(5)-plets which we need and the charged-fermion mass
matrices are given in Appendix A; in Appendix B we col-
lect the branching rules with respect to GSM of some ir-
reducible representations (irreps) of SU(5).

2 Maximal atmospheric neutrino
mixing in SU(5)

2.1 SU(5) preliminaries

The chiral fermion fields of one SM family are accommo-
dated in SU(5) irreps in the following way [19,20]: ψR ∼ 5
and χL ∼ 10, where the 10-plet is obtained as the anti-
symmetric part of 5 ⊗ 5. The 5, which is the defining rep-
resentation of SU(5), has the generator of electric charge

Q5 = diag (−1/3,−1/3,−1/3,+1, 0) . (11)

The fermion multiplets, in terms of chiral SM fields, are
given by

ψR =




d1
R
d2
R
d3
R

C�L
T

−CνLT


 , (12)
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χL =




0 Cu3
R

T −Cu2
R

T −u1
L −d1

L

−Cu3
R

T
0 Cu1

R
T −u2

L −d2
L

Cu2
R

T −Cu1
R

T
0 −u3

L −d3
L

u1
L u2

L u3
L 0 −C�RT

d1
L d2

L d3
L C�R

T
0



,

where the upper indices 1, 2, 3 are colour-SU(3) indices.
Note that χij

L = −χji
L .

The scalar SU(5) multiplets which may couple to fer-
mionic bilinears are determined by the following tensor
products, allowed by the chiral structure of ψR and χL
[20,25]:

5 ⊗ 5 = 15 ⊕ 10, (13)
5∗ ⊗ 10 = 5 ⊕ 45∗, (14)
10 ⊗ 10 = 5∗ ⊕ 50 ⊕ 45 . (15)

The only scalar multiplets needed for our Yukawa cou-
plings transform according to the irreps 5 and 45, or their
complex conjugates [20]; see Appendix A for the con-
struction of their Yukawa-coupling Lagrangians. In the
following, the scalar 45-plets will be distinguished from
the scalar 5-plets by a tilde.

All fermionic multiplets appear threefold, thus with
family indices a = 1, 2, 3 they are denoted ψRa, χLa, and
νRa. The right-handed neutrinos are SU(5) singlets: νRa ∼
1.

2.2 The family number

Implementing the idea of [18], we want to have MD (the
neutrino Dirac mass matrix) and M� (the charged-lepton
mass matrix) simultaneously diagonal. This must be en-
forced by means of some symmetry. If M� is diagonal be-
cause of a symmetry, then we see from (A12) that the
Yukawa-coupling matrices Yd and Ỹd must be diagonal;
but then, from (A11), Md turns out to be diagonal too.
This means that quark mixing must stem exclusively from
Mu, in the same way that lepton mixing originates exclu-
sively from MR.

Let us assume that, in analogy to the MAMM, there
is only one 5-plet HR coupling to the νR. Then we have
the following terms in the Lagrangian (see, for instance,
[20,26]):

ν̄RaC
(
ψ̄Rbi

)T
Hi

R (Yν)ab − 1
2
ν̄RMRCν̄

T
R + H.c. (16)

The seesaw mechanism is operative and the light-neutrino
mass matrix is given by (3), with

MD = vRYν/
√

2, (17)

where vR/(21/2) is the VEV of HR. We introduce the
family-number symmetry

F = diag (0,+1,−1) , (18)

applying both to the ψRa and to the χLa. In the νRa sector
one has F = diag (0,−1,+1) instead. The scalar multiplet
HR coupling to ν̄RCψ̄T

R (see (16)) and all the scalar multi-
plets coupling to ψ̄RχL (see Appendix A) are assumed to
have F = 0. The family numbers of the scalar multiplets
coupling to χT

LC
−1χL (see Appendix A) will be discussed

later. The symmetry group U(1)F defined here overtakes
the role of the three groups U(1)Lα of the MAMM. As a
consequence of the symmetry U(1)F , the Yukawa-coupling
matrices Yν , Yd, and Ỹd are all forced to be diagonal, as
we wanted; U(1)F is softly broken by the Majorana mass
terms of the right-handed neutrinos, i.e. by MR.

2.3 Maximal atmospheric neutrino mixing

In analogy to (4), we next introduce an interchange sym-
metry between the second and third families:

Z2 : ψR2 ↔ ψR3, χL2 ↔ χL3, νR2 ↔ νR3. (19)

This forces (Yν)22 = (Yν)33 and therefore leads to MD
of the form in (6). The matrix MR moreover satisfies
(MR)12 = (MR)13 and (MR)22 = (MR)33, just as in (5).
Therefore Mν is as in (7) and we have maximal atmo-
spheric neutrino mixing implemented. Note that U(1)F

together with the Z2 of (19) generate a symmetry group
O(2).

2.4 The down-type-quark and charged-lepton masses

We must check whether the introduction of U(1)F and
of Z2 is not incompatible with the freedom necessary to
accommodate all the charged-fermion masses and CKM
mixing angles. The CKM matrix is not the unit matrix,
therefore the up-type-quark mass matrix Mu cannot be
diagonal, contrary to what happens with the down-type-
quark mass matrix Md; this implies that we must allow
for non-diagonal Yukawa-coupling matrices for fermionic
bilinears of the type χT

LC
−1χL. In order to obtain this,

it is useful to separate the scalar multiplets coupling to
ψ̄RχL from those coupling to χT

LC
−1χL. Furthermore, as

we shall see below, in order to reproduce the down-type-
quark masses while avoiding the destruction of the form
of MD in (6), one also needs to ensure that HR is the only
scalar multiplet coupling to the νRa. In order to repro-
duce the down-type-quark masses and the charged-lepton
masses we need two 5-plets H and H ′ together with one
45-plet H̃. We introduce the symmetries

Z′
2 : νR → −νR, HR → −HR, (20)

Z′′
2 : χL → −χL, H → −H, H ′ → −H ′,

H̃ → −H̃, (21)

which allow for couplings of HR only to ν̄RCψ̄T
R (see (16)),

while H, H ′, and H̃ couple only to ψ̄RχL. All the scalar
multiplets coupling to χT

LC
−1χL, and thereby generating

Mu, are invariant under both Z′
2 and Z′′

2 .
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We supplement the symmetry Z2 of (19) with

Z2 : H ′ → −H ′, (22)

while HR, H, and H̃ transform trivially under Z2. De-
noting the Yukawa-coupling matrices of H and H ′ by Yd

and Y ′
d , respectively, the symmetry Z2 leads to (Yd)22 =

(Yd)33, (Y ′
d)22 = − (Y ′

d)33, and (Y ′
d)11 = 0. The Yukawa-

coupling matrix Ỹ of H̃ satisfies
(
Ỹd

)
22

=
(
Ỹd

)
33

. Then,

with (A11) and (A12) of Appendix A, we obtain

Md = diag (r + s,m+ n+ q,m− n+ q) , (23)
M� = diag (r − 3s,m+ n− 3q,m− n− 3q) , (24)

where r, s, m, n, and q are complex parameters. This
allows for the masses md = |r+ s| and me = |r−3s| to be
unrelated. As for ms, mb, mµ, and mτ , they are given by
only three effective parameters: n, m+ q, and m− 3q. As
ms  mb and mµ  mτ , we find m+ q � −n � m− 3q,
and this in turn leads to the approximate relation [19]

mτ/mb � 1, (25)

which is valid at the GUT scale. Clearly, ms and mµ re-
main unrelated. It is well known that (25) leads to the
correct ratio mτ/mb at low energies [27,28]. Thus, in our
scheme one is able to accommodate all the down-type-
quark and charged-lepton masses, and one is still rewarded
with the correct relation (25) at the GUT scale.

2.5 The up-type-quark masses and the CKM angles

It remains to demonstrate that the known up-type-quark
masses and CKM matrix can be accommodated through
Mu. The scalar multiplets not coupling to ψR and νR will
be denotedHz (which are 5-plets) and H̃z (45-plets). They
are invariant under both Z′

2 and Z′′
2 . First we consider

the constraints from the family number F . The terms(
χij

La

)T
C−1χkl

Lb have F quantum numbers given by the
matrix 

 0 +1 −1
+1 +2 0
−1 0 −2


 . (26)

Clearly, in order for the CKM matrix to be non-trivial
we must allow for Hz and H̃z to carry a non-zero family
number F = z; this means that the subscript z gives, by
definition, the F -value of the scalar multiplet. For the 5-
plets we have the possibilities H0, H±1, and H±2; whereas
for the 45-plets H̃z, which couple through antisymmetric
matrices, only z = 0 and z = ±1 have an impact onMu. If,
for a given pair of family indices (a, b) corresponding to a
family number F = −z, there is onlyHz, then we shall end
up with (Mu)ab = (Mu)ba; if, on the contrary, there is no
Hz but only H̃z, then we shall have (Mu)ab = − (Mu)ba;
if both Hz and H̃z are present, then the matrix elements
(Mu)ab and (Mu)ba will be unrelated; if neither Hz nor
H̃z exists, then (Mu)ab = (Mu)ba = 0.

Let us now proceed to take into account the symmetry
Z2. We consider the above scalar multiplets H0,±1,±2 and
H̃0,±1. Under Z2 we require that

Z2 :
{
H0 → H0, H1 ↔ H−1, H2 ↔ H−2,

H̃0 → −H̃0, H̃1 ↔ H̃−1.
(27)

We then find the following Yukawa couplings of the scalar
5-plets, compatible with Z2 and with F :

L5,u
Y = εijklp

{
(H0)

p

[
a

(
χij

L1

)T
C−1χkl

L1

+ b
(
χij

L2

)T
C−1χkl

L3 + b
(
χij

L3

)T
C−1χkl

L2

]

+ c
(
χij

L1

)T
C−1 [

χkl
L2 (H−1)

p + χkl
L3 (H1)

p]

+ c

[(
χij

L2

)T
(H−1)

p +
(
χij

L3

)T
(H1)

p

]
C−1 (

χkl
L1

)

+ d

[(
χij

L2

)T
C−1χkl

L2 (H−2)
p +

(
χij

L3

)T
C−1χkl

L3 (H2)
p

]}

+ H.c. (28)

With the 45-plets H̃0,±1 there are the following Yukawa
couplings:

L45,u
Y = εijklp

{
r
(
H̃0

)lp

q

[(
χij

L2

)T
C−1χkq

L3

−
(
χij

L3

)T
C−1χkq

L2

]

+ t
(
χij

L1

)T
C−1

[
χkq

L2

(
H̃−1

)lp

q
+ χkq

L3

(
H̃1

)lp

q

]

− t

[(
χij

L2

)T (
H̃−1

)lp

q
+

(
χij

L3

)T (
H̃1

)lp

q

]
C−1χkq

L1

}

+ H.c. (29)

After the spontaneous breaking of Z2, the couplings in
(28) yield a symmetric Mu; if we have both (28) and (29),
then we end up with a completely general up-type-quark
mass matrix.

There is a lot of freedom in choosing among the possi-
ble scalar multiplets which may contribute to Mu, and one
might think of deriving relations between the CKM mixing
angles and the up-type-quark mass ratios. It is, however,
difficult to imagine any such relation which might turn
out to be in agreement with the known values of those
quantities, since the up-type-quark mass ratios are unfa-
vorably small. In the next section we shall simply assume
a symmetric Mu generated by the five scalar 5-plets H0,
H±1, and H±2, thereby discarding any possible 45-plets.

The family number F is softly broken, through terms
of dimension 3, by the mass Lagrangian of the right-
handed neutrino singlets; consequently, soft F -breaking
terms must be considered also in the Higgs potential.
Below the SU(5) scale, F is effectively conserved in the
Yukawa couplings of the leptons; at low scales its role is
overtaken by the lepton numbers Lα. Thus, the idea of
softly broken lepton numbers, advocated in [18], is com-
patible with an SU(5) GUT. The family number F is also
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spontaneously broken, at the weak scale, by the VEVs of
the scalars with F �= 0, which are needed for reproducing
the known up-type-quark masses and CKM angles.

3 Gauge-coupling unification

Since we are constructing an SU(5) GUT, we have to ad-
dress the issue of gauge-coupling unification and we must
check that things can be arranged in such a way that the
unification scale mU lies in the range 1016 to 1019 GeV;
the lower value is determined by the need to avoid proton
decay, the higher value corresponds to the Planck mass.
We follow the strategy of [29–31] and use the one-loop
renormalization-group equations (RGE) for the gauge cou-
plings, which are decoupled from the RGE for the Yukawa
couplings and for the scalar-potential couplings – see, e.g.,
[32]. We assume the “desert” hypothesis, i.e. that there are
no particles with masses in between the Fermi scale (which
we represent by the mass mZ of the Z boson) and mU .
We then have

1
αU

= ω1 − t

2π

(
41
10

+ a1

)
(30)

= ω2 − t

2π

(
−19

6
+ a2

)
(31)

= ω3 − t

2π
(−7 + a3) . (32)

In these equations, αU is the fine-structure constant cor-
responding to the SU(5) gauge coupling at the scale mU ,
t = ln (mU/mZ), and ωj = 1/αj (mZ) for j = 1, 2, 3.
The numbers 41/10, −19/6, and −7 in (30)–(32) are the
contributions to the RGE from the SM multiplets [32];
in particular, the numbers 41/10 in (30) and −19/6 in
(31) include the effects of the single Higgs doublet of the
SM. The numbers a1, a2, and a3 are the contributions to
the RGE from any multiplets, beyond the SM ones, which
might exist at (or below) the Fermi scale. Using ω1 and
ω2, which are rather well known, as inputs, while mU and
α3(mZ) are treated as outputs, one derives from (30)–(32)
that

ln (mU/mZ) =
30π (ω1 − ω2)

109 + 15 (a1 − a2)
, (33)

α3(mZ) =
2 [109 + 15 (a1 − a2)]

3ω2 [111 + 10 (a1 − a3)] − 5ω1 [23 + 6 (a2 − a3)]
. (34)

Numerically, we use

α3(mZ) = 0.1200(28), α̂(mZ)−1 = 127.934(27),

and sin2 θ̂W(mZ) = 0.23113(15), (35)

from the article by Erler and Langacker in [33]. In (35),
α is the fine-structure constant and θW is the weak mix-
ing angle; the hats indicate that the MS renormalization
scheme has been used in obtaining those quantities. Then,
at the energy scale mU , the values of

α1 =
5
3

α

cos2 θW
, α2 =

α

sin2 θW
, (36)

Table 1. Contributions to aj (j = 1, 2, 3) of the GSM multi-
plets discussed in the text

a1 a2 a3

(1, 2)1/2 1/10 1/6 0
(6, 2)−1/6 1/15 1 5/3
(1, 2)3/2 9/10 1/6 0
(3, 1)2/3 4/15 0 1/6

and α3 become identical, cf. (30)–(32). When applying
(33) and (34), we use as input the mean values of α̂(mZ)−1

and sin2 θ̂W (mZ) in (35), together with (36), for the com-
putation of ω1 and ω2.

The scalar representations 5 and 45∗ of SU(5) each
contain one Higgs doublet (1, 2)1/2 (in the notation (a, b)c

the numbers a and b are the dimensions of the represen-
tations of the SU(3) and SU(2) subgroups of SU(5), re-
spectively, while c is the value of the weak hypercharge).
The VEVs of those Higgs doublets are of the order of the
electroweak scale, and therefore the masses of those Higgs
doublets, too, are at the Fermi scale. Since every 5 or 45
of SU(5) supplies one light Higgs doublet, our model has
(at least) nine Higgs doublets: one each from HR, H, H ′,
H̃, H0, H±1, and H±2. This makes eight low-mass Higgs
doublets beyond the one in the SM. From Table 1 we may
compute the corresponding contributions to the aj ; one
obtains 10 (a1 − a3) = 6 (a2 − a3) = −15 (a1 − a2) = 8.
Using (33) and (34), this leads to mU � 8×1013 GeV and
α3 (mZ) = 0.143. The latter value is not too far from what
is required, cf. (35), but the GUT scale mU is much too
low.

As a consequence of the preceding paragraph, we need
some additional multiplets of GSM at the electroweak
scale, in particular some multiplets with non-trivial colour
which might shift mU to higher values while keeping
α3 (mZ) in the corrrect range. Let us denote such a can-
didate GSM multiplet by D and investigate the condi-
tions that we should impose on D. To avoid problems
with proton decay, we require that D be embedded in an
SU(5) irrep which cannot have any Yukawa couplings; the
lowest-dimensional eligible SU(5) irreps are the 35 and
the 40, see Appendix B. Moreover, since the scalars which
have Yukawa couplings are 5 and 45-plets, D should not
be contained in the decompositions of the 5, the 45, or
their complex conjugates; else, D might, after the sponta-
neous breaking of the SU(5) symmetry at mU , mix with
analogous GSM multiplets from the 5 or 45, and thereby
end up having proton-decay-generating Yukawa couplings.
After imposing these two conditions, we find that there
are indeed some satisfactory candidates: in particular, the
(6, 2)−1/6, which is contained in both the 35 and the 40
of SU(5), and the (1, 2)3/2, which is contained in the 40
(see Appendix B). The contributions of these multiplets of
GSM to the aj are given in Table 1. In particular, we find
that if, beyond the nine Higgs doublets, there are at the
electroweak scale two (6, 2)−1/6 and one (1, 2)3/2, then

a1 −a2 = −5/3, a1 −a3 = −3/2, a2 −a3 = 1/6. (37)



128 W. Grimus, L. Lavoura: Maximal atmospheric neutrino mixing in an SU(5) model

Using (33) and (34), we obtain the numerical result

mU = 2 × 1016 GeV, α3 (mZ) = 0.117. (38)

This demonstrates that we may achieve a sufficiently high
GUT scale and, simultaneously, reproduce α3 (mZ) rather
well. We stress that the (6, 2)−1/6 and (1, 2)3/2 do not
occur in the decomposition of any of the SU(5) irreps
possibly coupling to fermions – see (13)–(15) and Ap-
pendix B. Therefore, couplings of the (6, 2)−1/6 and the
(1, 2)3/2 to the SM fermions can only be induced by loop
effects after GSM breaking, and it is justified to assume
that any such couplings will be very small. We need two
light (6, 2)−1/6 and one light (1, 2)3/2, which we may take,
for instance, from one 35 together with one 40 of SU(5).
The other GSM multiplets in the 35 and 40 will have to be
heavy, with masses of order mU . This certainly means a
fine-tuning problem for our theory, analogous to the well-
known doublet–triplet splitting of the scalar 5-plets.

It is well known that gauge-coupling unification in the
MSSM is compatible with the input data in (35) [29,30].
The numbers in (37), which determine mU and α3 (mZ),
are remarkable because they are exactly the same as in the
minimal supersymmetric standard model (MSSM) [34]2.
The SM with eight extra Higgs doublets, two (6, 2)−1/6,
and one (1, 2)3/2, produces exactly the same mU and
α3 (mZ) as the MSSM, if we confine ourselves to the one-
loop RGE. Differences will arise only at the two-loop level.
Thus, the gauge-coupling unification of the MSSM can be
imitated by simply adding a few scalar multiplets to the
SM.

The choice of the GSM multiplets (6, 2)−1/6 and
(1, 2)3/2 displays one additional noteworthy feature. Let
us assume that the total number of Higgs doublets is nine
(including the SM doublet) and that the number of mul-
tiplets (1, 2)3/2 is one, but let us allow the number n6 of
multiplets (6, 2)−1/6 to vary. It turns out that in this case
α3 (mZ) is independent of n6 and is always given by

α3 (mZ) =
7

12ω2 − 5ω1
. (39)

Thus, numerically, the value given in (38) is precisely ob-
tained from this formula, which is also valid for the one-
loop RGE result of the MSSM. On the other hand, mU

does depend on n6, which can be chosen such that mU lies
in the correct range without putting at peril the good (39).
The best choice is n6 = 2, with the value of mU given in
(38). For n6 = 1 the GUT scale comes down to 1.6 × 1015

GeV, which would result in much too fast proton decay,
whereas for n6 = 3 it increases to 1.2 × 1021 GeV, above
the Planck mass.

We may replace the (1, 2)3/2 by a (3, 1)2/3; for the
contributions to the aj see again Table 1. Then, analogous
to (38), we obtain

mU = 4.1 × 1017 GeV, α3 (mZ) = 0.117. (40)

mU is now higher than before, while α3 (mZ) remains the
same – by sheer coincidence, its value is again given by

2 The individual aj are different, however

(39). We note that with two (6, 2)−1/6 and two (3, 1)2/3 in-
stead of one, we can even allow for eleven light Higgs dou-
blets, with the result mU = 1.7×1017 GeV and α3 (mZ) =
0.123. Using the (3, 1)2/3 instead of the (1, 2)3/2 makes a
difference, though. The (3, 1)2/3 does not only occur in
the GSM decomposition of the 40, it also occurs in the
10∗. This means that, after SU(5) breaking, a coupling
of the light scalar multiplet (3, 1)2/3 to the fermionic bi-
linear dT

RC
−1dR becomes allowed. Such a coupling will be

induced at loop level. However, it depends on the coupling
strength of the 40 to the 5 and 45-plets in the Higgs po-
tential and it may in principle be made sufficiently small.

As for our simple usage of the one-loop RGE, refine-
ments are, of course, possible. In particular, we might use
the two-loop RGE, thereby taking into account the effect
of the large Yukawa coupling of the top quark. It would
also be possible to allow the light scalar multiplets to be
somewhat heavier than mZ , for instance with masses of
order 0.5 or 1 TeV, like in the MSSM. Still another pos-
sibility would be to take into account various threshold
effects at the scale mU . Still, the short study above shows
that there certainly are acceptable ways of making the
gauge coupling constants unify in our SU(5) theory with
nine light Higgs doublets.

4 Conclusions

In [18] a simple extension of the lepton sector of the SM
was put forward, with three right-handed neutrino singlets
and the seesaw mechanism, and three Higgs doublets in-
stead of one. By requiring conservation of the three lep-
ton numbers in the Yukawa sector, while allowing them
to be broken softly by the Majorana mass terms of the
right-handed singlets, it was possible to enforce maximal
atmospheric neutrino mixing by means of a Z2 symmetry,
while having arbitrary but in general large solar neutrino
mixing. Since in this model maximal atmospheric neutrino
mixing is enforced by means of a symmetry, the value 45◦
for the mixing angle is stable under radiative corrections.

In the present paper we have shown that the sugges-
tion of [18] can be embedded in SU(5) GUTs. Here we
summarize the main features of the embedding.
(1) Lepton mixing stems exclusively from the mass matrix
MR of the right-handed singlets νR; atmospheric mixing
is maximal; the solar mixing angle is free in general –
without fine-tuning it will be large but not maximal; Ue3 =
0. These are precisely the features of the tree-level mass
matrix found in the model of [18] which, as we have now
demonstrated, can be transferred to SU(5) GUTs.
(2) The CKM matrix is generated in the up-type-quark
sector, while the down-type-quark mass matrix is diago-
nal. This is a consequence of the multiplet structure of
SU(5), in particular, of the 5-plet ψR in (12).
(3) The family-number symmetry U(1)F , which is respon-
sible for the diagonal character of the matrices MD in
(17), Md in (23), and M� in (24), is broken in two ways:
soft breaking by MR and by terms of dimension two and
three in the Higgs potential, and spontaneous breaking by
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the VEVs of the scalar multiplets responsible for the up-
type-quark mass matrix. The non-trivial CKM matrix is
obtained via the spontaneous breaking of U(1)F , and the
non-trivial lepton-mixing matrix is obtained via the soft
breaking of U(1)F .
(4) On the other hand, Z2, which is responsible for maxi-
mal atmospheric neutrino mixing once the charged-lepton
mass matrix is diagonal, is broken only by the VEVs.
(5) In the lepton sector, the U(1)F enforces diagonal Yu-
kawa couplings. Therefore, in this sector and below the
GUT scale, instead of the family number F we have the
usual three lepton numbers Lα (α = e, µ, τ), which are
only softly broken by the mass terms of the right-handed
singlets [18,24].

These features are probably the most generic ones of
our model. The extension of the model of [18] to an SU(5)
GUT is certainly not unique, and the discussion in this
paper should be perceived as just an existence proof for
that extension. Among the features which might depend
on the way the extension is performed, we may count the
following ones.
(1) The assignment of family numbers chosen by us, to-
gether with our Z2 symmetry, can be thought of as origi-
nating from a non-abelian O(2) symmetry group.
(2) Our choice of scalars coupling to the down-type-quark
sector produces the successful relation mb � mτ at the
GUT scale.
(3) We need eight scalar 5-plets and one 45-plet in order to
accommodate maximal atmospheric neutrino mixing, the
charged-fermion masses, and CKM mixing. It is, therefore,
natural to assume that in our model there are nine light
Higgs doublets. We have shown that it is nevertheless pos-
sible to obtain gauge-coupling unification, even when as-
suming a desert between the electroweak and GUT scales.

We want to stress that obtaining gauge-coupling unifi-
cation in our model is not trivial at all. However, we were
able to find an excellent solution, in which the light scalar
multiplets are nine Higgs doublets (1, 2)1/2, one doublet
(1, 2)3/2, and two (6, 2)−1/6. It is most remarkable that in
this case the one-loop RGE for the gauge couplings lead to
results identical to those in the MSSM. Finally, we remark
that in our embedding the up-type-quark mass matrix is
a general symmetric mass matrix, with no relationships
among the up-type-quark masses and the CKM angles; it
is possible that more predicitive embeddings exist.

Acknowledgements. W.G. thanks H. Stremnitzer for many
helpful discussions on SU(5).

Appendix
A Yukawa couplings

In the following, indices which transform through the ma-
trix U ∈ SU(5) are written as upper indices; indices trans-
forming through the matrix U∗ are written as lower indices
[20]. It is clear from (13), (14), and (15) that the scalars
which may have Yukawa couplings to ψR and/or χL must

be in one of the following representations of SU(5): 5,
10, 15, 45, or 50. We want to avoid spontaneous viola-
tion of colour or electric charge, and to disallow a Majo-
rana mass term for the left-handed neutrinos. The scalar
multiplets present in Yukawa couplings are, therefore [20],
Hi ∼ 5 and H̃ij

k ∼ 45∗; the latter satisfies H̃ij
k = −H̃ji

k

and H̃ij
i = 0 (we use the summation convention). The

Yukawa couplings are given by [20]

LYukawa = L5
Y + L45

Y , (A1)

with

L5
Y = ψ̄Ria χ

ij
LbH

∗
j (Yd)ab (A2)

− 1
8
εijklp

(
χij

La

)T
C−1χkl

LbH
p (Yu)ab + H.c.,

L45
Y =

1
2
ψ̄Ria χ

jk
Lb H̃

∗i
jk

(
Ỹd

)
ab

− 1
8
εijklp

(
χij

La

)T
C−1χkq

Lb H̃
lp
q

(
Ỹu

)
ab

+ H.c. (A3)

The numerical factors in these equations are conventional.
The symbol εijklp represents the completely antisymmet-
ric tensor, which is normalized through ε12345 = +1. The
indices a and b are flavor indices. The Yukawa-coupling
matrices Yd and Ỹd are general complex 3×3 matrices; the
matrix Yu is symmetric without loss of generality, while
Ỹu is antisymmetric:

(Yu)ab = (Yu)ba and
(
Ỹu

)
ab

= −
(
Ỹu

)
ba
. (A4)

The vacuum expectation values are given by [20]
〈
Hi

〉
0 =

v√
2
δi
5 (A5)

and〈
H̃i5

k

〉
0

= −
〈
H̃5i

k

〉
0

=
ṽ√
2

(
δi
k − 4δi

4δ
4
k

)
for i ≤ 4,

〈
H̃ij

k

〉
0

= 0 for i, j ≤ 4. (A6)

The charged-fermion mass matrices are defined by

Lmass = −ūRMuuL − d̄RMddL − �̄RM��L + H.c. (A7)

The relations

εijk45

(
χij

La

)T
C−1χk4

Lb = 2 ūRauLb, (A8)

εijkl5

(
χij

La

)T
C−1χkl

Lb = 4 (ūRauLb + ūRbuLa) , (A9)

which follow directly from the components of χL given in
(12), are useful for the extraction of the up-type-quark
mass matrix Mu. One obtains

Mu =
1√
2

(
vYu − 2ṽỸu

)
, (A10)

Md =
1√
2

(
v∗Yd + ṽ∗Ỹd

)
, (A11)

M� =
1√
2

(
v∗Y T

d − 3ṽ∗Ỹ T
d

)
. (A12)
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B Branching rules

In this appendix we display the branching rules for some
representations of SU(5) in terms of representations of
GSM. For simplicity we do not underline the dimensions
of the representations of SU(3) and SU(2). The weak
hypercharge Y is normalized in the usual SM way, i.e.
Y = Q−T3. The branching rules below may, for instance,
be found in [25]3.

The defining representation of SU(5) is

5 = (3, 1)−1/3 + (1, 2)1/2 . (B1)

The product of two 5’s yields

15 = (6, 1)−2/3 + (3, 2)1/6 + (1, 3)1 , (B2)

10 = (3∗, 1)−2/3 + (3, 2)1/6 + (1, 1)1 . (B3)

The representations 45 and 50 of SU(5), which arise in
the tensor products of fermionic representations in (14)
and (15), have the following branching rules:

45 = (3, 1)−4/3 + (8, 2)−1/2 + (1, 2)−1/2 + (6, 1)1/3

+ (3∗, 3)1/3 + (3∗, 1)1/3 + (3, 2)7/6 , (B4)

50 = (6∗, 1)−4/3 + (8, 2)−1/2 + (6, 3)1/3 + (3∗, 1)1/3

+ (3, 2)7/6 + (1, 1)2 . (B5)

Finally, in Sect. 3 we use the irreps 35 and 40 and their
decompositions:

35 = (10, 1)−1 + (6, 2)−1/6 + (3, 3)2/3

+ (1, 4)3/2 , (B6)

40 = (8, 1)−1 + (6, 2)−1/6 + (3∗, 2)−1/6 + (3, 3)2/3

+ (3, 1)2/3 + (1, 2)3/2 . (B7)
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